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“... the fundamental law of computer science 
[is]: the faster the computer, the greater the 
importance of speed of algorithms”

Trefethen & Bau “Numerical Linear Algebra” SIAM
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The curious story of conjugate gradient (CG) algorithms

‣ Iterative methods:

‣ sequence of iterates 
converging to the solution

‣ CG matrix iterations bring 
the O(N3) cost to O(N2)

‣ 1950s — N too small for CG 
to be competitive

‣ 1970s — renewed attention

Gauss ia
n  e

l im
in

at io
n

CG i te ra t i ve  m
ethods



10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
18

O(N
3
)

O(N
2
)

10
0

10
1

10
2

10
3

10
4

10
5

10
6

10
2

10
4

10
6

10
8

10
10

10
12

10
14

10
16

10
18

O(N
2
)

O(N
3
)

The curious story of conjugate gradient (CG) algorithms

‣ Iterative methods:

‣ sequence of iterates 
converging to the solution

‣ CG matrix iterations bring 
the O(N3) cost to O(N2)

‣ 1950s — N too small for CG 
to be competitive

‣ 1970s — renewed attention

Gauss ia
n  e

l im
in

at io
n

CG i te ra t i ve  m
ethods



‣ 1946 — The Monte Carlo method.

‣ 1947 — Simplex Method for Linear Programming.

‣ 1950 — Krylov Subspace Iteration Method.

‣ 1951 — The Decompositional Approach to Matrix Computations.

‣ 1957 — The Fortran Compiler.

‣ 1959 — QR Algorithm for Computing Eigenvalues.

‣ 1962 — Quicksort Algorithms for Sorting.

‣ 1965 — Fast Fourier Transform.

‣ 1977 — Integer Relation Detection.

‣ 1987 — Fast Multipole Method Dongarra& Sullivan, IEEE Comput. Sci. Eng.,
Vol. 2(1):22-- 23 ( 2000)



‣ Solves N-body problems

๏ e.g. astrophysical gravity interactions

๏ reduces operation count from O(N2) to O(N)

Fast multipole method

f(y) =
N∑

i=1

ciK(y − xi) y ∈ [1...N ]
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‣ Solves N-body problems

๏ e.g. astrophysical gravity interactions

๏ reduces operation count from O(N2) to O(N)

Fast multipole method

f(y) =
N∑

i=1

ciK(y − xi) y ∈ [1...N ]



O(N) advantage

‣ Hierarchical methods:

‣ sequence of refinements 
converging (or contributing) 
to the solution

‣ FMM brings the O(N2) cost 
to O(N)

‣ 1990s — MD codes dropped 
FMM, as N too small to be 
competitive

‣ Now — renewed attention
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‣ space subdivision  tree structure

‣ to find “near” and “far” bodies
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‣ to find “near” and “far” bodies



Flow of FMM calculation

M2M
multipole to multipole

treecode & FMM

M2L
multipole to local

FMM

L2L
local to local

FMM

L2P
local to particle

FMM

P2P
particle to particle

treecode & FMM

M2P
multipole to particle

treecode

source particles
target particles

information moves from red to blue

P2M
particle to multipole

treecode & FMM



‣ The whole algorithm in a sketch

Downward SweepUpward Sweep

Create Multipole Expansions. Evaluate Local Expansions.

P2M M2M M2L L2L L2P



‣ Contributions from Barba group:



‣ Parallelization strategy:

M2M and L2L translations M2L transformation Local domain

Level k

Root tree

Sub-tree 1 Sub-tree 2 Sub-tree 3 Sub-tree 4 Sub-tree 5 Sub-tree 6 Sub-tree 7 Sub-tree 8



‣ Graph representation:

cij
wi

wj

Ref. — F. A Cruz, M. G. Knepley, L. A. Barba, 
PetFMM—A dynamically load-balancing parallel fast multipole library, 
Int. J. Num. Meth. Eng., Vol. 85(4): 403–428 (Jan. 2011)



The algorithmic and hardware speed-ups properly multiply

GPU implementation of FMM kernels



GPU Gems, Volume IV

In press, to appear February 2011 (?)

Codes in  http://code.google.com/p/gemsfmm/

http://code.google.com/p/gemsfmm/
http://code.google.com/p/gemsfmm/


GPU Gems, Volume III



FMM on GPU
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“Treecode and fast multipole method for N-body 
simulation with CUDA”, chapter in GPU Gems IV, in press
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FMM on GPU
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‣ the right methods and algorithms can provide 
leaps in capability many times that of Moore’s law 
would in a given period

‣ open source & open data enables tackling large, 
complex computational projects



‣ the right methods and algorithms can provide 
leaps in capability many times that of Moore’s law 
would in a given period

‣ new hardware for HPC adds to the mix for a new 
era of discovery via computation

‣ open source & open data enables tackling large, 
complex computational projects



Parallel FMM on multi-GPUs

Strong Scaling:

parallel efficiency of 
80% at 256, and 
50% at 512 nodes

N=108

p=10

Degima cluster at 
NACC, with 
Infiniband comm
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GPU breakdown

‣ N=108, on one node
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Under revision for Comput. Phys. Comm.

See also  http://barbagroup.bu.edu/

http://barbagroup.bu.edu/
http://barbagroup.bu.edu/


Suitability of the FMM for achieving 
exascale

FMM is a particularly favorable algorithm for the emerging 
heterogeneous, many-core architectural landscape.
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Spatial and temporal locality

‣ Algorithm has intrinsic geometric locality

‣ Acces patterns could be non-local 

๏ work with sorted particle indices, access via a start-offset combination

‣ Temporal locality:

๏ queue GPU tasks before execution, buffer the input and output of data 
making memory access contiguous

➡ The FMM is not a locallity-sensitive application



Global data comunications and synchronization

‣ Two most time-consuming in the FMM:  

๏ p2p — purely  local

๏ m2l — exhibits “hierarchical synchronization”

P2P at the leaf level

L2P evaluation

M2M

M2L

L2L

Upward sweep Downward sweep

P2M



Load balancing

‣ FMM load-balanced

๏ space-filling curves: Morton, Hilbert

๏ work-only (no comm)

‣ PetFMM:

๏ graph-partitioning

๏ will it scale?

๏ hierarchical partition?



plan for an “ExaFMM”
1) our present FMM technology is state-of-the-art;
2) we possess the potential for a substantial performance hike

AND all our codes are always open!



Present FMM state-of-the-art
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published KIFMM code
Salmon&Warren treecode
our published FMM code

Single-node performance:

timings of published 
kifmm  code (2006) , 
S&W treecode (2000) 
and our code

‣equal performance

‣same accuracy, 
measured L2-norm 
error 10-3

Single CPU core, Intel 
Core i7 2.67 (no SSE)



New experimental FMM with higher performance
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Our published FMM
With new optimizations
With algorithmic improvements

Optimized code:

explicit inline assembly 
within the p2p kernel, 
implementing SIMD

‣ 5x speed-up, 
single precision

Algorithmic 
improvements:

i)hybridize FMM with 
treecode

ii)dynamic error-control



‣ other recent work

In IEEE International Symposium on Parallel Distributed 
Processing (IPDPS), IEEE, pp. 1–12 (Atlanta, GA; April 2010)



‣ PetFMM — open library, dynamic load balancing, comm minimizing

๏ open question: will strategy scale to 1000s procs? hierarchical partition?

‣ Performance on single node:

๏ matching other s.o.t.a. codes

‣ Algorithmic innovations:

๏ hybrid treecode/FMM

๏ variable order/variable box-opening for minimum work to achieve target 
accuracy

Summary so far ...



But there is more ...

‣ Fault-tolerance:

๏ traditional checkpointing no longer adequate by itself

‣ instead:  replicate threads, correctness checks on-the-fly

๏ FMM allows natural correctness checks at the time of selecting p

‣ Autotuning the FMM:

๏ natural:  use tests/work estimats to select particles per box, p, and box-

opening parameters.

๏ parameter selection for load-balancing


